Occurrence and characterization of mercury resistance in the hyperthermophilic archaeon Sulfolobus solfataricus by use of gene disruption.
نویسندگان
چکیده
Mercury resistance mediated by mercuric reductase (MerA) is widespread among bacteria and operates under the control of MerR. MerR represents a unique class of transcription factors that exert both positive and negative regulation on gene expression. Archaea and bacteria are prokaryotes, yet little is known about the biological role of mercury in archaea or whether a resistance mechanism occurs in these organisms. The archaeon Sulfolobus solfataricus was sensitive to mercuric chloride, and low-level adaptive resistance could be induced by metal preconditioning. Protein phylogenetic analysis of open reading frames SSO2689 and SSO2688 clarified their identity as orthologs of MerA and MerR. Northern analysis established that merA transcription responded to mercury challenge, since mRNA levels were transiently induced and, when normalized to 7S RNA, approximated values for other highly expressed transcripts. Primer extension analysis of merA mRNA predicted a noncanonical TATA box with nonstandard transcription start site spacing. The functional roles of merA and merR were clarified further by gene disruption. The merA mutant exhibited mercury sensitivity relative to wild type and was defective in elemental mercury volatilization, while the merR mutant was mercury resistant. Northern analysis of the merR mutant revealed merA transcription was constitutive and that transcript abundance was at maximum levels. These findings constitute the first report of an archaeal heavy metal resistance system; however, unlike bacteria the level of resistance is much lower. The archaeal system employs a divergent MerR protein that acts only as a negative transcriptional regulator of merA expression.
منابع مشابه
Antisense regulation by transposon-derived RNAs in the hyperthermophilic archaeon Sulfolobus solfataricus
We report the first example of antisense RNA regulation in a hyperthermophilic archaeon. In Sulfolobus solfataricus, the transposon-derived paralogous RNAs, RNA-257(1-4), show extended complementarity to the 3' UTR of the 1183 mRNA, encoding a putative phosphate transporter. Phosphate limitation results in decreased RNA-257(1) and increased 1183 mRNA levels. Correspondingly, the 1183 mRNA is fa...
متن کاملProduction of recombinant and tagged proteins in the hyperthermophilic archaeon Sulfolobus solfataricus.
Many systems are available for the production of recombinant proteins in bacterial and eukaryotic model organisms, which allow us to study proteins in their native hosts and to identify protein-protein interaction partners. In contrast, only a few transformation systems have been developed for archaea, and no system for high-level gene expression existed for hyperthermophilic organisms. Recentl...
متن کاملPreliminary characterization of two different crystal forms of acylphosphatase from the hyperthermophile archaeon Sulfolobus solfataricus.
Acylphosphatase is a ubiquitous small enzyme that was first characterized in mammals. It is involved in the hydrolysis of carboxyl-phosphate bonds in several acylphosphate substrates, such as carbamoylphosphate and 1,3-biphosphoglycerate; however, a consensus on acylphosphatase action in vivo has not yet been reached. Recent investigations have focused on acylphosphatases from lower phyla, such...
متن کاملProperties of a novel thermostable glucoamylase from the hyperthermophilic archaeon Sulfolobus solfataricus in relation to starch processing.
A gene (ssg) encoding a putative glucoamylase in a hyperthermophilic archaeon, Sulfolobus solfataricus, was cloned and expressed in Escherichia coli, and the properties of the recombinant protein were examined in relation to the glucose production process. The recombinant glucoamylase was extremely thermostable, with an optimal temperature at 90 degrees C. The enzyme was most active in the pH r...
متن کاملEfficient CRISPR-Mediated Post-Transcriptional Gene Silencing in a Hyperthermophilic Archaeon Using Multiplexed crRNA Expression
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-mediated RNA degradation is catalyzed by a type III system in the hyperthermophilic archaeon Sulfolobus solfataricus Earlier work demonstrated that the system can be engineered to target specifically mRNA of an endogenous host reporter gene, namely the β-galactosidase in S. solfataricus Here, we investigated the effect of single...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 186 2 شماره
صفحات -
تاریخ انتشار 2004